2.3 Mathematical Modeling Examples for Lecture

1. A mixing problem:

A 1000 liter (L) tank initially contains 400L of water, in which there is 50 kilograms (kg) of dissolved salt. Fluid that contains $0.3 \mathrm{~kg} / \mathrm{L}$ of salt (i.e. it is 30% salt) is coming into the tank at $30 \mathrm{~L} / \mathrm{min}$. The tank has a drain spout at the bottom and fluid is coming out at $10 \mathrm{~L} / \mathrm{min}$. How much salt is in the tank when it starts to overflow?

STEP 1 Label:	$\mathrm{y}(\mathrm{t})=$ amount of salt in kg	
STEP 2 Find volume of water:	$\mathrm{V}(\mathrm{t})=$??? (starts at 400L adds $30-10=20 \mathrm{Levery}$ minute)	
STEP 3 Differential Equation:	$d y / d t=$ RATE IN - RATE OUT	(should be in $\mathrm{kg} / \mathrm{min}$)
	= ??? - ???	
	$y(0)=$???	(should be in kg)
STEP 4 Solve		

2. Temperature:

(a) A cup contains hot tea that is initially 200 degrees Fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$.

The room temperature is $70^{\circ} \mathrm{F}$. Assume the rate of change of the temperature of the tea is proportional to the difference in temperature between tea and its surroundings. (Newton's Law of cooling).
Assume the cooling (proportionality) constant for the cup is known to be -0.1.
What is the differential equation?
(b) What if instead, the cup of tea is left outside and the temperature outside is given by the formula

$$
T_{S}(t)=70+20 \sin \left(\frac{2 \pi}{24} t\right)
$$

What is the differential equation?

$$
\begin{array}{ll}
\text { STEP } 1 \text { Label: } & \mathrm{T}(\mathrm{t})=\text { temperature of tea in }{ }^{0} \mathrm{~F} \\
& \mathrm{~T}_{\mathrm{s}}=\text { temperature of surroundings } \\
\text { STEP } 2 \text { Differential Equation: } & \mathrm{dT} / \mathrm{dt}=\mathrm{k}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{s}}\right) \\
& \mathrm{T}(0)=? ? ?
\end{array}
$$

STEP 3 Solve

3. Savings and Loans:

(a) You deposit \$10,000 into an account that earns 3\% annually, compounded continuously. What is the value in 5 years?
(b) You deposit \$10,000 into an account that earns 3\% annually, compounded continuously. And you deposit an additional $\$ 2,000$ per year in the same account. What is the value in 5 years?
(c) You are paying back $\$ 30,000$ in student loans. The interest rate is 5% annually, compounded continuously. How much should you pay each year in order to pay off the loan in 10 years?

STEP 1 Label: $\quad A(t)=$ balance of account after t years in dollars
STEP 2 Differential Equation:
$d A / d t=r A \pm K$
$r=$ annual rate, $r A=$ interest earned in a year
$\pm K=$ additional amount deposited/withdrawn each year
$A(0)=$???
STEP 3 Solve

4. Air Resistance:

(a) You drop a ball from 10 meters in the air. The only force on the ball is force due to gravity (you ignore air resistance). What is the differential equation?
(b) You drop a ball from 10 meters in the air. Assume the force due to air resistance is proportional to the velocity of the ball. What is the differential equation? Solve the differential equation! (c) A spherical object of mass $m=1 \mathrm{~kg}$ is shot straight upward into the air from the ground with initial velocity $250 \mathrm{~m} / \mathrm{sec}(\approx 559 \mathrm{mph}$). Assume the force due to air resistance is proportional to the velocity with proportionality constant $\mathrm{k}=0.2 \mathrm{~kg} / \mathrm{sec}$ (this constant is reasonable for a sphere on earth in air with these units). What is the maximum height reached by the object?

STEP 1 Label: You get to make a choice on how you label!!!
Option 1: $\quad h(t)=$ height of object from the ground (up is positive, down is negative)
In option 1, force due to gravity is negative and force due to air resistance is positive when object is falling and negative when object is rising.
OR
Option 2: $\quad x(t)=$ distance object has fallen (down is positive, up is negative) In this option, force due to gravity is positive and force due to air resistance is negative when object is falling and positive when object is rising.
STEP 2 Differential Equation: Since $\mathrm{ma}=\mathrm{F}$, we have $\mathrm{m} \mathrm{dv} / \mathrm{dt}=$ sum of forces.
For option 1: (a) $m d v / d t=-m g \quad$ (no air resistance)
(b) $\mathrm{mdv} / \mathrm{dt}=-\mathrm{mg}-\mathrm{kv}$ (air resistance proportional to velocity)

OR
For option 2: (a) $\mathrm{m} \mathrm{dv} / \mathrm{dt}=\mathrm{mg} \quad$ (no air resistance)
(b) $\mathrm{mdv} / \mathrm{dt}=\mathrm{mg}-\mathrm{kv}$ (air resistance proportional to velocity)

STEP 3 Solve

